Atomic Energy Central School, Indore

Class XII Chemistry CO-ORDINATION COMPOUNDS Worksheet 4/6

Questions

1. Why is $[NiCl_4]^{2-}$ paramagnetic but $[Ni(CN)_4]^{2-}$ is diamagnetic? (At. Nos.: Cr =24, Co = 27, Ni =28)

2. For the complex $[Fe(CN)_6]^{4-}$, write the hybridization, magnetic character and spin type of complex. (At. Number: Fe=26)

3. Fill in the table for various complexes given: (some are done for you)

Complex	ON of central	Hybridisation	shape	Magnetic prop.	Type of complex
	metal atom				
$[NiCl_4]^{2-}$	+2	Sp ³	tetrahedral	paramagnetic	high spin
[Ni(CN) ₄] ²⁻	+2	dsp ²	Square planar	diamagnetic	low spin
[Pt(CN) ₄] ²⁻					
[Ni(CO) ₄]					
[Fe(CN) ₆] ³⁻					
[Co(ox) ₃] ³⁻					
$[CoF_6]^{3-}$					
[Cr(NH ₃) ₆] ³⁺					

4. A solution of $[Ni(H_2O)_6]^{2+}$ is green but a solution of $[Ni(CN)_4]^{2-}$ is colourless. Explain.

5. Amongst the following ions which one has the highest magnetic moment value?

(i) $[Cr(H_2O)_6]^{3+}$ (ii) $[Fe(H_2O)_6]^{2+}$

(iii) [Zn(H₂O)₆]²⁺

<u>Answers</u>

1. $[\operatorname{NiCl}_4]^{2^{-}}_{28}\operatorname{Ni}$ – outer e confg = $3d^8 4s^2$ Orbitals of Ni²⁺ion $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow$ \downarrow_{4s} \downarrow_{4p} **F** being a weak ligand, pairing up the electrons doesn't take place.

CN²⁻ being a strong ligand, pairing up the electrons takes place

2		
Э	•	

Complex	ON of central	Hybridisation	shape	Magnetic prop.	Type of complex
	metal atom				
$[NiCl_4]^{2}$	+2	Sp ³	tetrahedral	paramagnetic	high spin
[Ni(CN) ₄] ²⁻	+2	dsp ²	Square planar	diamagnetic	low spin
[Pt(CN) ₄] ²⁻	+2	dsp2	Square planar	diamagnetic	low spin
[Ni(CO) ₄]	0	sp ³	tetrahedral	diamagnetic	low spin
[Fe(CN) ₆] ³⁻	+3	d ² sp ³	octahedral	Weakly	low spin
				paramagnetic	
[Co(ox) ₃] ³⁻	+3	d ² sp ³	octahedral	diamagnetic	low spin
$[CoF_6]^{3-}$	+3	Sp ³ d ²	octahedral	paramagnetic	high spin
$[Cr(NH_3)_6]^{3+}$	+3	d ² sp ³	octahedral	paramagnetic	high spin

- 4. $[Ni(H_2O)_6]^{2+}$ is a high spin complex having unpaired electrons which can excite and on returning back, can emit radiations in the visible region, whereas $[Ni(CN)_4]^{2-}$ is a low spin complex. It has no electrons to excite and hence is colourless.
- 5. (ii) $[Fe(H_2O)_6]^{2+}$ as Fe^{2+} has 4 unpaired electrons in this complex.

Agitha R Menon PGT, Chemistry